

Field Programmable Gate Array Technology as an Enabling Tool

Towards Large-Neighborhood Cellular Automata on Cells with

Many States

Nikolaos Kyparissas, Apostolos Dollas

School of ECE, Technical University of Crete

Conference Paper | Accepted Manuscript

Published in: 2019 International Conference on High Performance Computing & Simulation

(HPCS)

DOI: 10.1109/HPCS48598.2019.9188084

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material

for advertising or promotional purposes, creating new collective works, for resale or redistribution

to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/HPCS48598.2019.9188084

Field Programmable Gate Array Technology as an
Enabling Tool Towards Large-Neighborhood

Cellular Automata on Cells with Many States
Nikolaos Kyparissas, Apostolos Dollas∗

School of Electrical and Computer Engineering
Technical University of Crete

Chania, Greece
nkyparissas@isc.tuc.gr, dollas@ece.tuc.gr

Abstract—Cellular Automata (CA) have been used for many
decades to simulate physical processes. From the 3×3 and 5×5
neighborhoods of the 1950’s, and typically on binary images, as
recently as the mid-2010’s the neighborhoods went up to 15×15
on images with a few states. Field Programmable Gate Array
(FPGA) technology, already applicable to CA simulation since the
early 1990’s, has reached such maturity levels that a small device
can simulate large-neighborhood CA. In this work we present an
architecture which we have fully implemented, that can simulate
CA with up to 29×29 neighborhoods on 256-state cells for
Full High Definition (FHD) image input/output with real-time
60 frames-per-second capability. Emphasis of the present work
is on the game-changing opportunities that FPGA technology
creates to the CA community. We present results from the
Greenberg-Hastings and Hodgepodge models, as well as a large-
neighborhood anisotropic model. Large neighborhoods either
yield qualitatively different results vs. smaller neighborhoods, or
lead to results which are merely impossible to produce with small
neighborhoods. A comparison of FPGA technology for CA shows
advantages vs. conventional Central Processing Units (CPUs) or
Graphics Processor Units (GPUs).

Keywords—cellular automata, large neighborhood, FPGA,
29×29, real time

I. INTRODUCTION

Cellular automata (CA) were proposed by John von Neu-
mann and Stanislaw Ulam during the 1950s [1]–[4] and
constitute an abstract, massively parallel discrete model of
computation. Through time, they have been thoroughly used
not only as models of complexity but also as models of non-
linear dynamic systems.

CA are one of the first-ever applications of FPGAs as
custom hardware computation accelerators. We built on four
decades of custom hardware CA machines and used today’s
technology in order to create a scalable architecture which
leads to a powerful environment for the exploration of large-
neighborhood 2D CA with the use of FPGAs.

In this paper we present the basic key points of our
architecture and its operation, before presenting and discussing
some interesting, unprecedented results that were produced
from experimentation with large-neighborhoods on some well-
known excitable CA. These promising results demonstrate that

∗Also at the Telecommunication Systems Institute, Chania, Greece

our generic FPGA-based architecture is a powerful tool for the
exploration of large-neighborhood 2D CA and their modeling
capabilities.

This paper consists of five sections. Following the present,
introductory section, Section II describes the related work
and discusses the intrinsic characteristics of FPGA technology
vs. CPUs and GPUs; Section III briefly presents the basic
elements of the design; Section IV has results from actual
runs of three different models, two of which are standard and
a third one which shows how large neighborhoods open up
interesting possibilities in anisotropic CA simulation. Lastly,
Section V has a discussion on the results and conclusions.

II. RELATED WORK AND FPGAS VS. COMPETITIVE
TECHNOLOGY

This section presents an overview of related works and
approaches that have been proposed to accelerate cellular
automata simulations with the use of FPGAs. In addition, it
provides some basic background on FPGA technology and
compares it to CPUs and GPUs.

A. FPGA Technology and Related Work

The FPGA technology, originally proposed in the 1980’s
and steadily evolving ever since, is a technology in which
algorithms are mapped directly to the hardware resources
of the integrated circuit. Loosely described, small memories
implement basic logic functions (logic gates, 1-bit adders,
comparators, etc.) in the form of Look-Up Tables (LUT);
programmable interconnects allow for the connection of these
units (Figure 1). In addition, basic memory cells such as
Flip-Flops hold (as needed) results in registers, and larger
units such as on-chip memory (called with various names,
such as Block Random Access Memory - BRAM), Digital
Signal Processors (DSP), clock synchronizing circuits, and
even microprocessors complement the designer’s palette of
elements to use. FPGAs operate at a much slower clock rate
compared to CPUs, however, the immense internal bandwidth
as well as the intrinsic opportunities for parallelism - if it can
be exploited - allow for very fast processing at a fraction of
the energy requirements vs. competitive technologies. FPGA

technology has been used to accelerate CA simulations ever
since its infancy in the early 1990s, however, to the present
day, the capabilities of FPGAs have evolved in such a major
way that the corresponding architectures for CA simulation
have changed drastically as well. We will highlight these
architectures, historically.

I/O Block

Block RAMConfigurable Logic
Block with LUTs

Programmable
Interconnection

Fig. 1: The basic components of an FPGA.

Toffoli and Margolus’s Cellular Automata Machines (CAM)
were the first special-purpose computers designed to accelerate
CA simulations. The first results were published in 1984
[5]. The approach followed by Toffoli consists of only one
hardware module implementing the transition function which
is “time-shared” between cells. In other words, CAM’s archi-
tecture processes a stream of cells and their neighborhoods
sequentially in order to, eventually, update the whole grid and
produce a new frame of the simulation. In 1986, the next ver-
sion of CAM, CAM-6, was completed by Toffoli and Margolus
and was produced commercially as a PC expansion board [6].
The latest version of CAMs, CAM-8, made its appearance in
1993 [7]. It was a multiprocessor version of its predecessors,
with interconnected CAM-like modules processing separate
sectors of the CA grid simultaneously. The machine supported
arbitrarily large neighborhood sizes and cell sizes in bits, as
its computation was based on shifting the data of a sector
accordingly before processing them. Following the steps of
its predecessors, CAM-8’s performance was outstanding at
that time and led to Margolus’s later work on custom FPGA
machines, up to 2000 [8], [9].

During the 1990s the Cellular Processing Architecture
(CEPRA), an FPGA-based architecture, was developed at
the Technical University of Darmstadt. It was a streaming
architecture with an internal dataflow similar to that of CAM.
The key difference between the two systems was that CEPRA
used pipelined arithmetic logic instead of LUTs to compute
the CA’s transition function. As a result, the advantage of
CEPRA compared to CAM was that complex rules could be
computed in one step, whereas CAM had to convey their
computation through cascaded LUTs. CEPRA-8L, the first
member of the CEPRA family, was completed in 1994 [10]. It
contained 8 FPGA-based CA processors which could access

all their 3 × 3 neighborhood cells simultaneously thanks
to a computation window buffer. CEPRA-1X, CEPRA-8L’s
successor, was completed in 1997 [11]. It was an FPGA co-
processor mounted on a PC expansion board and used the
memory of the host computer to store the CA grid. CEPRA-
1X supported 2D and 3D CA with neighborhoods of radius
r = 1 and could display the evolution of 1024× 1024 16-bit
cells in real time.

In 1996, Shaw, Cockshott and Barrie from the University
of Strathclyde in the UK argued that, as far as lattice gas au-
tomata are concerned, parallel machines can outperform LUT-
based computers such as CAM and yield more useful results
[12]. They introduced their Scalable Parallel Architecture for
Concurrency Experiments (SPACE) and proposed a different
approach to design hardware for CA simulations. Their FPGA-
based architecture consisted of an array of interconnected
processing elements (PEs), each one of which represented a
cell of the HPP model, a fundamental lattice gas automaton. A
SPACE board, which contained 16 FPGA chips, could simulate
a 9×30 lattice gas automaton, achieving nearly a 10x speedup
over 2 CAM-8 modules.

In 2001, Kobori, Maruyama and Hoshino from the Univer-
sity of Tsukuba in Japan presented their own FPGA-based
CA system [13]. Their streaming architecture consisted of an
array of PEs sweeping across the CA grid. In this computation
method, if the depth of the PE array is n, each cell of the
grid is processed n consecutive times within the FPGA. As a
result, if the input cells belong to generation g, the output cells
will belong to generation g+n. This FPGA-based CA system
comprised of an off-the-shelf PCI board with one FPGA and
used the host computer to display the results. It could simulate
a 2048 × 1024 FHP lattice gas automaton and calculate 400
generations per second, achieving nearly a 155x speedup over
a high-end CPU at the time. However, the CA visualization
was in pseudo-real time, as most calculated generations never
reached the PE array’s output.

The contribution of the aforementioned projects to the
field of custom CA computers is substantial. However, they
comprise only a fraction of the landscape. During the last
3 decades, many other significant projects and developments
have contributed to the exploration of the field and FPGAs
have been widely used to simulate CA. Most implementations
have been custom to a specific CA rule without the use of
large neighborhoods [14].

As we have seen so far, there are two prevailing approaches
to design custom hardware accelerators for CA simulation:

• To exploit a CA’s spatial parallelism by implementing
it as an array of PEs. Each PE represents a CA cell,
interconnected to its adjacent PEs which are the neighbor-
ing cells. This method results in outstanding performance
when simple CA rules are concerned. However, when it
comes to complex rules with many states per cell and
large neighborhood sizes, a PE’s demand in logic and
routing resources increases, and performance drops.

• To design a streaming architecture which processes the
CA as a stream of cells. This approach is more suitable

for rules with large neighborhoods on large grids. Our
work falls within this approach, but with a new architec-
ture as present-day FPGAs offer different capabilities as
opposed to those of ten years ago.

B. FPGAs vs. Competitive Technologies for CA Simulations

The work presented in this paper has been evolving over
the last four years and previous versions of our architecture
have been submitted to the Xilinx Design Competition, with
11×11 neighborhoods in 2015 [15] and 21×21 neighborhoods
in 2018 [16], reaching a top-12 distinction in both cases among
more than one hundred designs. The main reason why this
project has been continuing for close to five years remains the
untapped full potential of present-day FPGAs vs. competitive
technologies such as CPUs. In this subsection we will try to
highlight the reasons why both the CA neighborhood and the
states simulated on an FPGA can increase substantially before
we reach the hard limits of the technology. We will try to be
very specific, as the purpose of this work is to prompt the CA
community to direct us to well-sized architectures which are
meaningful and useful.

FPGAs generally run at one order of magnitude slower
clock rate vs. CPUs. A design for non-trivial problems running
at 300MHz is often considered to be very good. This means
that with a parallelism level of 10 we could break even vs. a
CPU if input/output (I/O) were to scale evenly - which they do
not. The only characteristic that may be considered similar to
a CPU is the latency and the bandwidth of the main memory
(e.g. DDR3, DDR4, etc.). Other than that, a CPU has typically
two levels of cache memory with 3-5 cycles access time for the
first level, and around 10 cycles for the second level. These fig-
ures are important because the number of registers in almost all
present-day architectures is 32. Therefore, if we increase the
neighborhood of a CA even to the 29×29, which is the figure
of our present architecture, the weights alone are 841 and each
one needs to operate on a 4-bit or 8-bit region (if we have 16 or
256 states, respectively). Present-day CPUs have many cores,
and they employ pipelining (i.e. overlapping different stages of
successive instructions so that instructions with many cycles
each are completed on successive clock cycles). The above
description is somewhat of an oversimplification, as modern
computer architects employ other techniques as well in order
to gain performance. Nonetheless, as the CA neighborhoods
get larger, the use of the so-called Level-1 cache is mandatory.
Therefore, limitations in CA simulation on CPUs do not stem
from the required processing but rather from the mandatory
data movement. Simply stated, for the computation of a single
CA cell there need to be multiple CPU memory accesses if the
neighborhood becomes large enough. Even techniques such as
storing multiple weights in a single word, can only push a bit
further the hard limit of a CPU’s capabilities.

By contrast, the computational resources on-chip of an
FPGA are fully customizable, This means that even a small
FPGA could store not only the 29×29 weights presented here,
but much larger neighborhoods as well. In order for each cell
to enter the FPGA only once, the internal BRAM storage needs

to store n× (k− 1)+ k elements (size n lines for k− 1 rows
of the neighborhood - all but the last line to be processed,
plus k elements of the last line) and the k × k weights of
the neighborhood, for n × n grids and k × k weights of the
neighborhoods. There may be additional considerations such
as whether the grid is planar or a torus, or whether we have
multiple sets of rules for the CA, but as a rough computation
the figures are correct. The capability of FPGAs to store the
internal state plus the required buffers means that for each
external memory access to read an input datum we have O(k2)
operations which are performed internally to the FPGA at a
multi-terabyte internal bandwidth. In addition, the word size of
operands is fully customizable, yielding a user-defined trade-
off between accuracy and level of exploitable parallelism (the
speed is less of a concern as due to pipelining only the initial
latency is affected in CA simulations).

Unlike CPUs, GPUs can muster a very substantial level of
parallelism, and hence they may prove to be a very useful
technology for CA simulation in the future. Nonetheless, the
situation in the late 2010’s is that GPUs are still highly
optimized for vector operations on floating point numbers.
Although support of GPUs of certain operations (designed
in for deep learning applications) could prove useful towards
CA simulation, GPUs require an order of magnitude more
energy for this type of computation vs. FPGAs, and their
computational model would leave vast resources underutilized.
This said, the parallelism which is built-in GPUs could prove
to be very valuable, especially if at some future point CA
computations evolve into floating point representation and for
neighborhoods which are beyond on-chip storage of FPGAs.

III. DESIGN AND ARCHITECTURE

A detailed and thorough description of our architecture is
beyond the scope of this paper as this would come at the
expense of not showing the CA simulation capabilities that
the new architecture allows for. However, the key elements of
the design are briefly presented here for readability purposes.

A simplified schematic of our system is shown in Figure 2.
In order for it to begin its operation, the system’s memory
needs to be loaded with the initial CA state (an initial state
for each cell of the grid at time t = 0) via a serial port (UART)
from a computer. The software needed to create and transmit
a compatible file to our system has been developed as part of
this project and is provided to the user.

After the memory initialization process is complete, the
system starts displaying the stored CA grid on screen. In
order to calculate a new CA state we need to have a complete
timestamp of the previous state of the automaton. Thus, for
the purpose of double buffering a completed timestamp of
the automaton state is presented to the user while the same
timestamp data is processed by the CA Engine in order to
produce the next generation of the automaton.

Every line that is loaded into the graphics buffer following
the controller’s request, is also loaded into the CA Engine
buffer. The CA Engine buffer holds all the lines needed to

FIFO

FIFO

UART
RX

DDR
Signals

UART
Controller

Grid Lines
Buffer

Memory
Controller

FIFO
CA

Engine

VGA
Signals

Graphics
Controller

Access
Request/
Granted

Access Request/Granted

Memory Initialization Complete

1 CA
cell

k CA
Cells

Access
Control

Address & Command Signals

Address &
Command
Signals

 Memory Burst (128b)

Access
Control

Memory
Burst

(128b)

Write
Back

Memory
Initializer

Memory Access
Arbitrator

Graphics
Data

Feeder

Address &
Command

Signals

Fig. 2: A simplified schematic of the system architecture.

Neighborhood
Column (k cells)

Transition
Rule

Column k-2 Weights

...

Column 0 Weights

Column 1 Weights

Column 2 Weights

...

Neighborhood
Column
(k cells)

sent from
 Lines Buffer

Central Cell’s
Current State

Central Cell’s
New State

Column k-1 Weights

×

×

×

×

×

+

×

×

Fig. 3: The CA Engine.

provide the engine with the neighborhood of each cell of the
line being processed.

This custom buffer combined with the CA Engine’s neigh-
borhood sliding window provide the arithmetic logic with the
complete neighborhood of a different cell at every clock cycle
(Figure 3). As a result, loading a cell’s neighborhood data
into the processing unit is reduced from a O(k2) problem into
a O(1) task in terms of time (but with O(k2) resources - i.e.

level of parallelism), where k is the size of the neighborhood in
each dimension. The FPGA’s large internal bandwidth allows
for the design of a fully parallel CA Engine which can produce
a new cell value per clock cycle.

Our design was implemented in VHDL using the Xilinx
Vivado 2018.1 tools and mapped for testing and experimenta-
tion to the Digilent Nexys 4 DDR Artix-7 FPGA board. Before
generating the design, the user needs to set its generic variables
accordingly based on the CA rule they wish to simulate. These
parameters, which include the cell size in bits and the neigh-
borhood size, determine the number and size of the buffers
used in the design, as well as the number of pipeline stages
required to meet the timing constraints. The aforementioned
dimensioning procedure is performed automatically during the
design instantiation process. The CA Engine runs at 200 MHz,
fast enough to produce and display 60 CA generations per
second at 1080p (Full HD), with each cell of the automaton
being represented by one pixel on the screen.

The cellular grids that can be simulated by our architecture
are virtually unlimited, since our design constraints are not due
to the time complexity of the arithmetic calculations but rather
due to the amount of the FPGA’s internal BRAM resources.
At present we limit the resolution to that of the display for
practical reasons.

IV. SIMULATION EXAMPLES AND RESULTS

In order to demonstrate the capabilities of our design we
chose two well-known CA which we expanded so that they
utilize large, 29×29 neighborhoods and many cell states. In ad-
dition, we experimented with large-neighborhood anisotropic
rules which show interesting self-organization behavior.

Fig. 4: The Greenberg-Hastings CA after 500 iterations with a 3×3 von Neumann, a 29 × 29 von Neumann and a 29 × 29
circular neighborhood respectively. The three images above are of the same resolution, with each pixel representing a cell of
the automaton’s grid.

The rules chosen are the Greenberg-Hastings CA and
the Hodgepodge Machine. Both CA belong to the group of
excitable CA, a type of CA which models excitable media.
An excitable medium is a dynamical system which has the
ability to propagate spatially distributed periodic waves. The
neighborhood and state expansion of the CA rules, above,
is not new [17], [18]. However, to our knowledge, it is the
first time that such large neighborhoods are utilized, yielding
interesting results.

A. The Greenberg-Hastings Model

The Greenberg-Hastings Model (GHM) is a 3-state CA
with a von Neumann neighborhood with radius 1, designed
to model excitable media [19]. In spite of their simplicity, the
carefully designed rules produce interesting excitable media
patterns. In the past, more sophisticated attributes have been
added to GHM with the use of FPGA technology, such as
stochasticity, in order to create a more realistic and isotropic
excitable media model [20].

In its original form, there are numerous initial conditions
which lead to periodic behavior [21]. Such initial conditions
are proven to exist in the extended version of the rule as well,
where the width of the waves has also been proven to be
proportional to the neighborhood size [17]. For this simulation
example we used a 29 × 29 von Neumann neighborhood
and cells with 16 states. A cell can be “quiescent” (state 0),
“excited” (state 1) or in a sequence of “refraction” (states 2
to 15). The cell’s transition function is defined as:

ct+1(i, j) =

1 if ct(i, j) = 0 AND the number

of excited neighbors > t

ct(i, j) + 1 if ct(i, j) > 0

ct(i, j) otherwise

where t is a threshold value. As shown in Figure 4, by
using a circular neighborhood instead of a von Neumann
neighborhood, the patterns formed are heavily affected by the

change and the waves and vortices become curved, which is
an interesting qualitative result in its own right.

B. The Hodgepodge Machine

The second example is a CA rule known as the Hodgepodge
Machine, an excitable CA with q states. It was designed in
1988 by Martin Gerhardt and Heike Schuster and was popu-
larized by Alexander Dewdney and his column in Scientific
American’s Computer Recreations [22], [23]. Normally, the
Hodgepodge Machine rules require a 3 × 3 Moore neighbor-
hood.

For this simulation we used a 29×29 Moore neighborhood
and a simplified version of the rule which calculates 1 sum
for both ill (cell state = q) and infected cells (0 < cell < q).
The cell’s state transition function is defined as:

ct+1(i, j) =

number of infected
and ill neighbors

k
if ct(i, j) = 0

0 if ct(i, j) = q
sum of all neighbors

sum of infected neighbors + g otherwise

where k and g are the two parameters of the rule that
determine when and how fast the “infection” will spread. The
automaton’s parameters used for this simulation were q = 255,
k = 5 and g = 105.

As we can see in Figure 5, we notice that the vortices
produced co-exist with small, stable, vortex-like patterns lo-
cated in the center of the larger vortices. This phenomenon
was not present in any of our earlier experiments with smaller
neighborhood sizes reaching up to 19×19 cells. An additional
qualitative difference vs. simulation with smaller neighbor-
hoods was the apparent lack of convergence of the CA when
the initial data were completely random, but with convergence
when 19 × 19 sized tiles of random numbers are placed
randomly in the grid - a phenomenon which is not present
in the 3× 3 neighborhood.

(a) The Hodgepodge Machine after 500 iterations with a 3×3, a 19×19 and a 29×29 Moore neighborhood respectively. The
three images above are of the same resolution, with each pixel representing a cell of the automaton’s grid.

(b) The use of 29×29 neighborhoods results in large vortices with stable core patterns.

(c) The stable vortex cores are not formed with smaller neighborhoods, such as the 3×3 or the 19×19 Moore neighborhood.

Fig. 5: The Hodgepodge Machine with a 29× 29 Moore neighborhood produces results which differ from those when smaller
neighborhoods are used.

C. Anisotropic Rules
The anisotropy of CA lies either in the anisotropy of

the grid, the anisotropy of the neighborhood or both. We
experimented with the neighborhood’s anisotropy. Our
anisotropic 29× 29 Moore neighborhood contains the largest
weights at its far right (eastern) edge, with the weight value
gradually being reduced to 1 towards the far left (western)
edge of the neighborhood. The state transition function for
each 256-state cell is quite simple and defined as:

ct+1(i, j) =

ct(i, j)− 1 if weighted sum > threshold

ct(i, j) + 1 if weighted sum < threshold

ct(i, j) otherwise

The self-organization properties of this relatively simple
anisotropic CA can be seen in Figure 6. Starting from a
randomly filled grid, the automaton forms long, thin stripes of
cells after several thousand generations. As time goes by, the
worm-like ripples shown in Figure 6b tend to propagate to the
left by virtue of the anisotropic neighborhood’s weights. The
long, thin, rope-like structures become more coherent once a
ripple is straightened and the two edges of the ropes merge
into one.

D. Performance Results
Our architecture calculates 60 CA generations per second

on 1920×1080 FHD grids with 8-bit pixel representation,

(a) Starting from a randomly filled grid, the automaton cells form horizontal and vertical structures after 120 generations.

(b) The evolution of the automaton after 500 and 10000 generations respectively.

Fig. 6: The self-organization properties of a simple anisotropic CA with a large 29 × 29 Moore neighborhood after 1, 120,
500 and 10,000 generations. The horizontal and vertical cell concentrations after 120 generations, and the worm-like patterns
after 500 and especially after 10,000 generations are not artifacts from the image resolution in the paper - they exist on the
large screen as well.

regardless of the rule complexity. The output is fed to a VGA
interface, and the user can “slow down” the simulation. As
shown below, our system has a measured speedup of up to
51× against an Intel Core i7-7700HQ CPU (1 core) running
highly optimized (-O3) software programmed in C. Table I
shows the CPU and FPGA result averages from multiple
runs of two CA models. The speedup of a contemporary
GPU vs. a CPU is comparable to our speedup for similar
CA rules, but for smaller, 11 × 11 neighborhoods [24], [25];
unlike our architecture, the GPU performance gets degraded
as neighborhoods become larger, and a GPU consumes at least
10 times more energy than an FPGA for these computations.

The amount of required FPGA resources for each rule
depends on the CA rule’s neighborhood and the size of
each cell in bits. Results from our implementation of the
Hodgepodge Machine on the modest-sized FPGA of the Xilinx
Nexys 2 board are shown in Table II.

TABLE I. COMPARATIVE RESULTS: EXECUTION TIME AND
SPEEDUP

Cellular Automaton i7-7700HQ,
1000 gen.

Our Design,
1000 gen.

Our Design’s
Speedup

Greenberg-Hastings,
n = 29

469.58 sec 16.67 sec 28.16×

The Hodgepodge
Machine, n = 29

851.29 sec 16.67 sec 51.06×

V. DISCUSSION AND CONCLUSIONS

In the present paper we focused on the enabling charac-
teristics of present-day FPGAs for large neighborhood CA
simulation. Although exceptionally elegant and powerful at
the time, the FPGA-based CA architectures of the early 1990s
have a different philosophy than the one we present here. All
aspects of computation, internal storage, and even development
tools are different now with respect to that time, and hence

TABLE II. RESOURCE UTILIZATION

Resource Utilization Utilization %
LUT 20375 32.14
LUTRAM 1555 8.18
FF 27224 21.47
BRAM 65 48.15
DSP 1 0.42
IO 73 34.76
BUFG 7 21.88
MMCM 3 50
PLL 1 16.67

the solution is different as well. Table III, below, shows the
current work, recently published work on GPUs, as well as
the older, classic FPGA-based CAM architectures.

A small present-day FPGA can easily hold in terms of the
main parameters n = 2000 and k = 40, (being limited by the
BRAM resources and the on-chip logic, respectively). Subject
to the above constraints, the internal bandwidth is such that
with pipelining we can have one cell processed per cycle at
the rate of the cells, as they enter the FPGA from external
memory. More complex rules and state sensitive rules (i.e.
rules that change, depending on the state of a cell) can be
implemented as well.

TABLE III. LARGE-NEIGHBORHOOD CA IMPLEMENTATIONS ON
HARDWARE

Architecture Neighborhood
Size Performance

Margolus,
1993-2001, CAMs

experimented with
up to 11×11

10 gen./sec for
a 512×512 grid
with 3-bit cells

Gibson et al., 2015,
Workstation with
Nvidia GTX 560 Ti

experimented with
up to 11×11

≈ 65× over serial
for Game of Life on
a 2048×2048 grid

Millan et al., 2017,
Nvidia TitanX GPU

experimented with
up to 11×11

21.1× over serial
for Game of Life on
a 4096×4096 grid

Kyparissas & Dollas,
2019, Artix-7 FPGA

experimented with
up to 29×29

51× over serial for the
Hodgepodge Machine
on a 1920×1080 grid

We have demonstrated experimentally that present-day FP-
GAs are a “game changer” in terms of capabilities to simulate
CA with large, 29 × 29 neighborhoods. A trade-off between
performance and flexibility comes from the designs being
“compiled in” but applicable to varying datasets. At present,
we have a framework in which we enter in an easy form
the desired rules, and the framework generates the hardware
project which compiles the design with Xilinx Vivado 2018.1
for Digilent’s Nexys 4 DDR Artix-7 FPGA board - we could
have a generic design at the trade-off of somewhat smaller
neighborhoods or smaller number of frames per second.

We hope that CA engines with very large k, very large n,
and even “strange” rules (e.g. state-based rules, location-based
rules, probabilistic rules, anisotropic rules, etc.), will result to
interesting, new CA experiments.

ACKNOWLEDGEMENTS

This work was partially funded by the European commis-
sion in the context of the FP7 ICT project QualiMaster (under

grant no. 6195525). The authors wish to acknowledge Xilinx
Corp. for donating the Nexys 4 DDR board that was used in
this work.

REFERENCES

[1] J. von Neumann, “The General and Logical Theory of Automata,”
Cerebral Mechanisms in Behavior: The Hixon Symposium, John Wiley
& Sons, 1951.

[2] J. von Neumann and A. W. Burks, Theory of Self-Reproducing Automata.
University of Illinois Press, 1966.

[3] S. Ulam, “Random Processes and Transformations,” in International
Congress of Mathematicians, Cambridge, 1950.

[4] A. W. Burks, Essays on Cellular Automata. University of Illinois Press,
1971.

[5] T. Toffoli, “CAM: A High-Performance Cellular-Automaton Machine,”
Physica D: Nonlinear Phenomena, vol. 10, no. 1-2, 1984.

[6] T. Toffoli and N. H. Margolus, Cellular Automata Machines - A New
Environment for Modeling. MIT Press, 1987.

[7] N. H. Margolus, “CAM-8: A Computer Architecture Based on Cellular
Automata,” Pattern Formation and Lattice-Gas Automata, AMS, 1993.

[8] ——, “An FPGA Architecture for DRAM-Based Systolic Computa-
tions,” in 5th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM ’97), 1997.

[9] ——, “An Embedded DRAM Architecture for Large-Scale Spatial-
Lattice Computations,” in 27th Annual International Symposium on
Computer Architecture (ISCA ’00), 2000.

[10] R. Hoffmann, K.-P. Völkmann, and M. Sobolewski, “The Cellular
Processing Machine CEPRA-8L,” Mathematical Research, no. 81, 1994.

[11] C. Hochberger, R. Hoffmann, K.-P. Völkmann, and J. Steuerwald, “The
CEPRA-1X Cellular Processor,” Reconfigurable Architectures: High
Performance by Configware, IT Press, Bruchsal, 1997.

[12] P. Shaw, P. Cockshott, and P. Barrie, “Implementation of Lattice Gases
Using FPGAs,” Physica D: Nonlinear Phenomena, vol. 12, no. 1, 1996.

[13] T. Kobori, T. Maruyama, and T. Hoshino, “A Cellular Automata System
with FPGA,” in 9th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM ’01), 2001.

[14] G. C. Sirakoulis, “Cellular Automata Hardware Implementation,” in
Cellular Automata: A Volume in the Encyclopedia of Complexity and
Systems Science, Second Edition, A. Adamatzky, Ed. New York, NY:
Springer US, 2018.

[15] N. Kyparissas and A. Dollas, “Game of Complex Life - Modeling
of Urban Growth Processes with Cellular Automata,” in Xilinx Open
Hardware European Design Contest, 2015, http://www.openhw.eu/2015-
finalists.html.

[16] ——, “A Parallel Framework for Simulating Cellular Automata on
FPGA Logic,” in Xilinx Open Hardware European Design Contest,
2018, http://www.openhw.eu/2018-finalists.html.

[17] R. Fisch, J. Gravner, and D. Griffeath, “Threshold-Range Scaling of
Excitable Cellular Automata,” Statistics and Computing, vol. 1, 1991.

[18] S. Robles, “Cellular Automata,” Fractal Design [Online],
http://www.fractaldesign.net, Accessed: April 2019.

[19] J. M. Greenberg and S. P. Hastings, “Spatial Patterns for Discrete
Models of Diffusion in Excitable Media,” SIAM Journal on Applied
Mathematics, no. 54, 1978.

[20] N. Vlassopoulos, N. Fatès, H. Berry, and B. Girau, “An FPGA Design
for the Stochastic Greenberg-Hastings Cellular Automata,” in 2010
International Conference on High Performance Computing & Simulation
(HPCS ’10), 2010.

[21] J. M. Greenberg, C. Greene, and S. Hastings, “A Combinatorial Problem
Arising in the Study of Reaction-Diffusion Equations,” SIAM J. Matrix
Analysis Applications, vol. 1, 1980.

[22] A. K. Dewdney, “Computer Recreations: The Hodgepodge Machine
Makes Waves,” Scientific American, vol. 259, no. 2, 1988.

[23] M. Gerhardt and H. Schuster, “A Cellular Automaton Describing the
Formation of Spatially Ordered Structures in Chemical Systems,” Phys-
ica D: Nonlinear Phenomena, vol. 36, no. 3, 1989.

[24] M. J. Gibson, E. C. Keedwell, and D. A. Savić, “An Investigation of
the Efficient Implementation of Cellular Automata on Multi-Core CPU
and GPU Hardware,” Journal of Parallel and Distributed Computing,
vol. 77, 2015.

[25] E. N. Millán, N. Wolovick, M. F. Piccoli, C. G. Garino, and E. M.
Bringa, “Performance Analysis and Comparison of Cellular Automata
GPU Implementations,” Cluster Computing, vol. 20, no. 3, 2017.

